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The direct numerical simulation of dissipative, highly compressible turbu-

lent flow is performed using a pseudospectral Fourier technique. The govern-

ing equations are cast in a form where the important physical variables are

the fluid velocity and the natural logarithms of the fluid density and temper-

ature. Bulk viscosity is utilized to model polyatomic gases more accurately

and to ensure numerical stability in the presence of strong shocks. Numeri-

cal examples include three-dimensional supersonic homogeneous turbulence and
two-dimensional shock-turbulence interactions.
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1 Introduction

The primary topic to be discussed in this paper is the direct numerical simulation

of those highly compressible turbulent flows which can be described by the

single-fluid Navier-Stokes equations within the constraint of periodic boundary
conditions. While modern theoretical analyses of compressible turbulent flows

began with the work of Moyal [1], their direct numerical simulation is much
more recent. Following the seminal work of Passot and Pouquet [2], many other

authors have also used Fourier methods, for example, Erlebacher el al., [3],

nlaisdell et al., [4], Sarkar et al., [5], Sida and Orszag [6], and Zang et al., [7].
Here, Fourier methods are extended in two principal ways. First, we de-

scribe a technique which has proven useful previously [8]: the governing equa-

tions are cast in a form where the important physical variables are not the fluid

density and temperature directly, but rather their natural logarithms; this en-

sures adherence to a physical constraint of positive-definiteness which may be

computationally violated in non-logarithmic formulations, leading to numerical

instability. Second, bulk viscosity is utilized, both to model polyatomic gases

more accurately and concomitantly to ensure numerical stability in the presence

of strong shocks.
The efficacy of using logarithmic variables and physical values of bulk viscos-

ity will be shown through several numerical examples. In particular, logarithmic

variables will allow for the simulation of supersonic homogeneous turbulent flow,

while bulk viscosity will enable the resolution of shock structure. These numer-

ical examples will be followed by a conclusion where extensions of the current
work will be discussed.

2 Basic Equations

The basic equations of compressible fluid dynamics may be expressed as

Op
O---[+V.pu = 0 (1)

Opu
0--_ +V'puu = -Vp+7' [pTu+ (3 +t's) I_7"u] (2)

Op
0-7+ v. p,, = -(_ - 1)pV. u + (v - l)V. (_VT)

+(7-1) [-_n_n, + ,,,(V . u)2] (3)

Here, via = Oiuj + cgjui - 2/3/SijV • u and I = [_ii./] is the unit dyadic.
The equation of state will be that of an ideal gas, p = RpT/m, where

R/m = % - c_; R is the ideal gas constant, m is the molecular weight of
the gas and cp and c_ are the specific heats at constant pressure and volume,

respectively. Here, we will consider polylropic gases, i.e., gases such that the



specificheatsandtheirratio7 = cp/c_ are taken to be constants. In this case,

the speed of sound c satisfies c 2 = 7RT/m = 7P/P.

We can non-dimensionalize the equations (1) (3) in terms of reference values

2 = 7RTo/m and Po = poc_o/7 we have (in thePo, To, and uo. Thus, using co

following, dimensionless quantities have a superscript attached, e.g., p*):

P = pop*

U --" I/o11"

T = ToT*

v = roy* = poc op*T*/7 (4)

Now we choose a length scale Lo so that t = tot* where to = Lo/uo. Then

dividing (1) by po/to, (2) by poUo/to, and (using R/m = c_(7 - 1)) dividing (3)
by po/to gives:

Op*
Or----7 + Xy. . p* u*

0p'u*
at_ + xy, . p*u*u*

Op* T*
Or-----:--+ _* " p*T*u*

= o (5)
1

-- _Y,p* T*
M2o7

+ V,. [p*V,u* + (L_-q-y_)IV, .u*] (6)

-- -(7 - 1)p*T*V, • u* + _Y, • (_*V,T*)

+M_('f-l)[_-i;._-_.+_(_',.u*) 2] (7)

Here, Mo = Uo/Co is the reference Math number and the dimensionless transport
coefficients are:

t'* = tL/(pouoLo)

Y*B = yB/(pouoLo)

=  /(C po oLo) (S)

and the li*j are the same as previously defined, except now in terms of the
corresponding dimensionless quantities.

In (8), we recognize p* = l/Re, i.e., the dimensionless shear viscosity is the

inverse of the Reynolds number Re. Although the transport coefficients which

appear in the fluid equations are generally dependent on p or T or both, here
we will operate under the assumption that these coefficients are all constant.

Then the Prandtl number is Pr - cpp/tc = "ytt*/tc* and the ratio of bulk to

shear viscosity 3 = yt_/y = P*R/Y* will also be constant.
Using the quantities developed above, we can write the dimensionless fluid

equations in a more compact form. First, we will drop the '*' from the dimen-

sionless quantities, remembering that we are now dealing with non-dimensional



equations.Second,wewill choosethereferencevelocityasuo = co so that

Mo = I. Then, since 7, It, ttB, and t¢ are all constants, the equations become

Op
__O--_-+Vpu = 0 (9)

Opu 1
-- + V" pull = --V pT
Ot 7

+ #_7 • [Tu+ (} + fl) 1_7 .u] (10)

OpT
0----_+ V . pTu = -(7- l)pTV-u+ _V2T

+ 7(7-1)it [lrijrij + fl(V.u) 2] (11)

(The dimensionless pressure is p = pT/7.) These are the set of basic equations
with which we will simulate the motion of a compressible fluid. In particular,

by judiciously choosing appropriate values for p, fl, and n, we will be able to

simulate both turbulence and shocks, as well as their interaction.

3 Logarithmic Variables

Although the variables p and T may take values only between 0 and oo, it

is always possible in a discrete numerical simulation to inadvertently assign

these variables non-positive values. When this occurs, an instability generally

arises which stops the simulation. One sure way to avoid this is to express

the basic equations in terms of logarithmic variables: A = In p and f = InT.

This is particularly appropriate when we wish to simulate fluid flows in which

compressibility plays an important role, as in the case where shocks are present.

Since this is the case at hand, we will use these logarithmic variables here.

Placing p = e_ and T = e_ into (9)-(11) yields the basic non-dimensional

equations in a logarithmic formulation:

0A

0--_-+ u
0u

0--/- + u

Oaf

m+u
0t

V)_ = -V.u (12)

1
Vu = --e_V(A+f)

7

+pe-_V. [Vu+ (3 +fl) IV.u ] (13)

Vf = -(7- l)V.u+ _e-'_[V2f+ (Vf) 2]

+ 7(7- 1)/re-(:'+°)I1 ,j rq +/3(V- u)2] (14)



It will beseenpresentlythat theseequations,thoughnot inconservativeform
[9],arewellsuitedtosimulatinghighlycompressiblefluidmotion.

4 Transport Coefficients

Along with the value given to tile ratio of specific heats 7, a very important

feature of any simulation of fluid dynamics is the set of values assigned to
tile dimensionless transport coefticients Il, I*B, and _. Although all of these

coefficients vary with temperature and pressure, here they will be assumed to

be constant. An investigation of the effects that their dependence on density

and temperature may" have will be deferred.

The values assigned to these dimensionless coefficients depend on both the

physical references Uo, Lo, and To, and on numerical constraints, such as grid

spacing. It is well known, for example, that the ratio of the largest dynamically
important scales to the smallest is proportional to Re 3/4 [i0]. Assuming that

the constant of proportionality is about one, and since current computers limit

the total number of points on a grid to about l0 s, we have Re < 500 for a three-

dimensional grid and Re < 104 for a two-dimensional grid, approximately. Note

that this is the Reynolds number ba.sed on a characteristic physical length, and
not the microscale Reynolds number, which is based on an average turbulent

eddy size. Other numerical constraints, such as a limit on available computa-
tional time, reduce grid sizes from their potential maximum and further reduce

the maximum Re which may be considered.

ltowever, once p = l/Re is set, the other transport coefficients follow some-

what directly. Since Pr = 7g/P m 1 and since 1 < 7 _< 5/3 for common gases,

we see tc _ p. The value of pr3, or equivalently fl = PB/P, is highly dependent

on whether the gas is polyatomic or not; although monatomic ga_ses have/3 _ 0,

polyatomic gases range from/3 _ 1 for air to _3_ 30 for molecular hydrogen to

/3 _ 103 for carbon dioxide [tl].

5 Numerical Method

ltere, we will use a Fourier pseudospectral technique [12] to numerically solve the

logarithmic variable equations (12)-(14). In this method, the physical variables

A, u, and a are expanded in terms of discrete Fourier series, e.g.,

A(x) = A(k)e'kx
lkl<N/2

The argument of the variable will be used to denote whether it is in x-space:

2_(x), or in k-space: A(k). In the above equation, n is the spatial dimension and
N is the number of points on the numerical grid in one dimension (in 2D the

grid is N x N and in 3D it is N x N x N). When discrete forward or inverse



Fouriertransformsareneeded,theyarefoundusinga fast.Fouriertransform
(FFT)suhroutine.

Noticethat tilemaximumvalueofanycomponentof k isstrictlylessthan
N/2. The reason is that a Fourier coefficient which has one of the components
ofk equal to N/2 has only a real part, as far a_s the FFT is concerned. Multiply-

ing this component by" ik yields ttle corresponding components of its gradient,

for example, which have only imaginary parts. An FFT, however, ignores the

imaginary part of such a component, so that its contribution to any derivative

is always zero. It is therefore prudent to never include such components in an)'
FFT-based method for the numerical solution of differential equations.

When the Fourier expansions of the physical variables are placed into the

small set of partial differential equations (PDEs) (12)-(14), the result is a large

set of ordinary differential equations (ODEs), one equation for every value of

k which the FFT utilizes. Although either the set of PDEs in x-space or the

set of ODEs in k-space can be time-integrated, here it is the ODEs which are

integrated forward in time. The reason is that the numerical arrays in k-space
contain fewer nonzero elements than the arrays in x-space. Since lkl < N/2

and since the arrays in either space contain about N n elements, then the ratio

of nonzero array elements in k-space to x-space is rr/4 = 0.79 in 2-D and

rr/6 = 0.,52 in 3D (i.e., the ratio of the area of a circle to the area of the square

which just encloses it, and the volume of a sphere to the vohune of a cube which

just encloses it, respectively). Thus, one may always reduce tile size of a majority
of the arrays in a k-space-based computer code so that they are minimal and

yet contain all essential information. When it is necessary to perform an FFT to

x-space, a minimal array is mapped into a full-sized FFT array; this is needed
only to evaluate products of two x-space arrays, so only two fllll-sized FFT

arrays are actually needed. Since the total number of arrays needed in a typical

simulation are usually much greater than two, memory requirements in 2-D

may be reduced by about 20% and in 3D by about 50%. (Tile argument in this

paragraph also pertains to fully spectral methods where Ikl < k ..... < N/2.)

Although minimal arrays are critical in order to maximize N, on modern
supercomputers with very large memories such a large value of N may lead to

prohibitively long run times. Since grid sizes are kept to a reasonable value
in the work to be presented in this paper, minimal arrays are not used here

(though they have been implemented previously [laD. Nonetheless, this is the

motivation for solving the ODEs in k-space.
The time-integration method used here was a 'third-order partially corrected

Adams-Bashforth scheme' [14]. The time-step size was variable and inversely

proportional to the largest absolute modal value (Rmax) from the right-hand-

side of (12)-(14) at each iteration:

At = { _/n'"_ ififR"_*>1,%,o_< 1 (16)

where typically 10 -2 < a < 10-1. This method of determining At automatically



satisfiesthenecessarystabilityconditions[2].
In thepseudospectralmethodpresentedhere,shockstructureis resolved.

This is doneby consideringcases where /3 = tti_/p is large enough so that

whatever shocks occur are of a naturally limited steepness [15]; for example,

the gas under consideration can be H2 (molecular hydrogen) or some mixture

containing He, or the characteristic length Lo can be assumed small for an

arbitrary polyatomic gas. In contrast, numerical solutions of the Euler equations

require methods that use shock-cal)turing or shock-fitting [12, pp. 255 273].

6 Initial Conditions

In order to begin a simulation, the initial values of A, u, and a need to be

specified (but not the boundary conditions, which are periodic). The initial

turbulent velocity is set according to

lu(k)12 ~ t:4exp(_2k=/k 2) (17)

where ko is the wave number at. which the spectrum peaks; the phase of the

u(k) are initially random. In setting the initial conditions on the velocity it is
useful to decompose it into 'incompressible' and 'compressible' parts; in terms

of Fourier coefficients, the decomposition is easily effected:

u(k) = u'(k) +u_(k) (lS)

where the solenoidal (i.e, incompressible) part u s and compressible part u _ are,

u"(k) = (I- ]_f_). u(k)

= (19)

and where 1_ is the unit vector in the direction of k. Tile k = 0 component of

u* corresponds to tile mean flow velocity.
For the moment assume that we have an initially incompressible flow. Then

u c = 0 and p = 1 at. t = 0; upon taking the divergence of (10) and defining

T = 1 + T', we find the fluctuation T' initially satisfies:

-V' T ' =
= S(x) (2o)

In terms of Fourier coefficients, the temperature fluctuations which are consis-

tent with the assumption of an initially incompressible flow are given by

T'(k) = k-2,g(k) where k > 0 (21)

Since T'(x) > -1 in order that T > 0, and since T' _ _t[u'r, then u * must
be scaled accordingly. The mean value of l,el = (denote,t by (I,et2}) is the ini-

tial turbulent Mach numl)er squared Mt 2. The maximum fluctuation of lu*[ 2



is largerthanM 2, and we expect that maxMt -,- 7 -I in order that the con-

straint T' > -1 is obeyed. Here, when initial flow conditions with close to

maximal incompressible velocities are desired, the initial velocity is scaled so

that rain T'(x) = -0.99.
In truly incompressible initial conditions, the flow is subsonic. However,

we are at liberty to choose A, u, and e arbitrarily as initial conditions for the

Navier-Stokes equations. Thus, supersonic (max[u(x)[ > l) initial turbulent

flow conditions can be specified. For example, A(k), u_(k), u'(k), and e(k) can

be specified independently of one another. As another example, an initially in-

compressible flow field can be specified (to represent a local region of turbulence)

and a compressible flow field (corresponding to an approaching shock front) can
be added to it. These alternatives will, in fact, enable us to investigate highly

compressible homogeneous turbulence and shock-turbulence interactions.

7 Numerical Results

The pseudospectral logarithmic variable method was implemented in both a 3D

code and a 2D code. The 3D code was used to simulate supersonic isotropic

turbulence on a 643 grid, while the 2D code was used to examine the passage of a

region of turbulent flow through a shock on a 5122 grid. These numerical studies

will be discussed following the definition of some quantitative flow measures.

It will be usefi_l at this point, to define a number of quantities which measure
certain characteristics of a turbulent flow and its simulation. First, the mean of

a quantity Q averaged over its vahles at all grid points xi wiIl be denoted by

l _Q(xi) (22/(Q)- N, _
i

where n = 2 for 2D and n = 3 for 3D. The turbulent Mach number Mr, average

wavenumber k_,_, dissipation wavenumber kD, microscale Reynolds number Rx
and compressibility index _ are then

mt

ko

R_

In the dimension]ess system

local dissipation rate c is

= (<l.i_)/ (v)) '/_

= [<(o,_,)_>/ (.,_,)]'/=

= ((_)/ 0,')) '/"

= (I,,q_>/ <),,1'} (2a)

adopted here, v = t_. Also, )_e = 2:'r/ka,,e and the

= tt [(V x u) 2 + ([3 + 4/3)(V. u) _] (24)

Dissipation clearly has a part related to vorticity _7 x u and to dilatation g7. u.



7.1 3D Homogeneous Supersonic Turbulence

In the previously cited work [2 7], initial RMS Mach immbers were never above
Mt = 0.8, and usually were much less. One possible reason for this limitation

is tile occurrence of negative values of density or temperature on the numerical

grid, which can lead to such local instabilities as effectively negative diffusion.

Here, these possibilities are explicitly avoided through the use of logarithmic

variables. The initial RMS Mach nmnber for the test cases considered ranged

from Mt = l to M_ = 2 and there were no problems experienced in these 643

simulations (such as conservation of energy) as long as the dissipation wave

number began and remained less than kraal=32.

Consider two cases for which Mt = 1 initially; in these cases, half of the

physical volume contains flow with supersonic velocity at I = 0. In both cases,

7 = 1.4, t l = 0.01, fl = 0, and n = 0.7 (the Prandtl number is thus approximately

unity); these values correspond roughly to those of air. Also at t = 0, A = o" = 0
everywhere and the velocity satisfied (17), with /% = 6.

The difference between the two runs lay in the value of X- |n run 3D64A,

X = 0.25 while in run 3D64B, X = 0.75 at t = 0. Both simulations ran until

almost t = l at about 14 cpu-sec/A/; the fluctuation in total energy was less

than 0.2% for 3D64A and less than 0.5% for 3D64B. In Figures l and 2, the time

variation of the quantities Mt and X, and in Figures 3 and 4, the time variations

of R),, k .... and kD are shown for runs 3D64A and 3D64B, respectively. For
these runs, kD < k ..... = 39, so that both are numerically well resovled.

One difference between the two runs manifests itself in the evolution of

enstrophy ((U × u) 2) and mean square divergence ((x_. u)2). These quantities

are are presented in Figures 5 and 6 for runs 3D64A and 3D64B, respectively.
Since fl = 0 for these runs, a consideration of (24), along with Figures 5 and

6, shows that dissipation occurs primarly due to vortical motion, rather than

to dilatational motion (although for a short time after the start of run 3D64B

dilatational motion is actually more important).

Another difference is in the relation between the solenoidal and compressible

velocity spectra, as shown in Figures 7 and 8, for runs 3D64A and 3D64B,

respectively. Figures 7 and 8, which correspond to t = 0.57 and t = 0.56,

respectively, show that the dominant part of the velocity spectra at the highest

k-values is the compressible one. |lowever, Figure 8, corresponding to run 3D64B
which had an initial value of fl = 0.75, indicates that the compressible part of

the velocity spectra is also dominant over the medium as well as high k-values.

7.2 2D Shock-Turbulence Interaction

In addition to the homogeneous 3D runs just described, a set of 2D runs on a

512 -_grid were completed. These runs, 2D512A, 2D512B, and 2D512C, differed

initially only in the value of fl assigned to each: 10, 30, and 100, respectively;

for all three runs, p = 0.001, g = 0.7, and 7 = 1.4. All the runs began



with identicalinitial conditions,whichconsisted of a region of incompressible

turbulence satisfying (17) with ko = 9 filling the left half of the 2D grid and

a shock wave in the right half of the grid. Using the shock jump conditions

[10, p. 335], density, temperature, and velocity corresponding to a Mach 2

shock were set inside the right half of the grid, while in the left half of tile

grid the mean density was < p >= 1 and the mean velocity was < u_: >= 2

(the frame of reference was such that the shock front was initially stationary

and the turbulent region was moving from left to right into it). At tile edges

of the turbulent region, there were transition regions of twenty grid points in

the z-direction (i.e., the streamwise direction) in which the interior turbulent

velocity field went smoothly to zero (by a squared-cosine taper). The turbulent

temperature fluctuations were determined by (21).

Similarly, there was a squared-cosine taper from the free stream values of

density, temperature, and velocity to their jump values, and back again, over

ti_e twenty grid points on the outside edges of the shocked region. Thus, we

begin on the leftmost edge of the grid with freestream values, make a transition

into a turbulent region, make another transition out of the turbulent region

back into the freestream values and then a transition into the shocked region,

followed by a transition back to freestream values on the rightmost edge of the

grid. This resulted in a periodic set of initial conditions which could be treated

by a Fourier method. These initial conditions can be thought of as 1) a one-

dimensional Mach 2 shock wave, and 2) a localized region of eddy turbulence

placed into the freestream flow (and moving with it) just ahead of the shock
front.

Once evolution began, the front of the shock steepened slightly, and the

density and temperature increased slightly, leading to a pressure jump ratio of
5 across the shock front (it was initially 4.5). Based on this pressure ratio the

Math number of the shock should have risen to 2.1; the shock front, which would

have remained stationary in the reference frame chosen, was observed to move

forward at a relative velocity of 0.I, in accordance with expectations. During

the same time, the back of the initial shock pulse spread into a rarefaction

wave. As an example of the time variation of R:,, kD, and k_, consider Figure

9, which pertains to run 2D512B, and is similar for the other 2D runs. Since

kD < kma_ = 256, it would appear that the turbulence is sufficiently well
resolved.

The resolution of the shock front, in turn, gets better with increasing values

of ft. Consider Figures 10, II, and 12, where spanwise averages for vorticity

and pressure are shown for the three runs for the same time (t = 0.567). In

Figure 10, which corresponds to fl = 10, there are some oscillations in the shock

front; these oscilations disappear, however, in the Figures 11 and 12, which

correspond to/_ = 30 and _ = 100, respectively. To visualize what happens to

the turbulence as it crosses the shock front, consider Fiqures 13 and 14, which

show a small section of the grid for runs 2D512A and 2D512B (/3 = 10 and

/3 = 30, respectively), both at t = 0.567.



In Fiqures11and12,thevorticityjumpsbya factorofabout2.5,whichis
alsothecaseforFigure10,if theinitial overshootis ignored.Thisisconsistent
withlineartheory[16,17].Theshapeof theshocksis alsoconsistentwith the
resultsfromprevioussimulationsusingENO methods [18].

8 Conclusion

In this paper, two primary extensions of pseudospectral Fourier methods for

solving the compressible Navier-Stokes equations have been described. First, by

using a 'logarithmic variable' fommlation of the basic equations, it was shown

that supersonic homogeneous turbulence could easily be simulated. Second,

by using realistic values of the ratio of bulk viscosity to shear viscosity, it was
demonstrated that shock structure couhl be resolved and shock-turl)ulence in-

teractions could be examined by direct numerical simulation.

The logarithmic variable method is not an explicitly conservative formnla-
lion, though it was seen that the global energy was very well conserved. In

addition, the Rankine Hugoniot relation between pressure jump across a shock

and upstream Mach number was also seen to hold. Although these measures
indicate that the numerical method was accurately solving the equations of mo-

tion, an exhaustive study was not performed. Such a study is more appropriately
done in a one-dimension simulation, rather than the two- and three-dimensional

simulations presented here, and will be deferred.

Note that shock capture and resolution is facilitated by the naturally occur-

ring bulk viscosity term. It had been found in pioneering work in the numerical

solution of flow problems involving shocks [9], that the introduction of an 'arti-
ficial viscosity' was necessary to ensure numerical stability in solving the Euler

equations. Other viable stabilization techniques for the Euler equations, includ-

ing spectral filtering and smoothing, have also been developed [19]. In addition

to these techniques for Euler flows, 'hyperviscosity' methods have been apl)lied

in solving compressible Navier-Stokes flows, for the purpose of increasing the

effective Reynolds number of a simulation, as well as ensuring stability [20]. In

comparison to these algorithmic approaches, the novelty here is, again, that we

use a physically motivated approach involving the bulk viscosity. It may prove

usefifl to compare these different methods in greater detail, but this is beyond

the scope of the present work.

Although the distribution of grid points is not concentrated at the shock

front, this is not a disadvantage. In l)articular, the presence of turbulence also

requires a sufficient number of grid points for its resolution; thus it is advan-

tageous to have an even distribution of grid points, since small scale dynamic

activity is occuring at essentially all parts of the grid. In this way, the small
scale structure of turbulence and the small scale structure of shock fronts are

treated equally.
In the fiiture, we hope to incorporate reacting flows within the kind of sim-

10



ulationsdescribedhere.Thisis an importantapplication,sincea turbulent,
reactingflow,in thepresenceof shocks,occursin manysituationsof interest
to tileaerospaceandastrophysicalcommunities.Onespecificareaof interest
is in thesupersonic,turbulentcombustionwhichoccursin a scramjet engine.
Anotheris theinflowthroughtheaccretionshockaroundablackhole.
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Figure 1. RMS Mach number Ms and compressibility index X for run 3D64A.
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Figure 2. RMS Mach number Mt and compressibility index X for run 3D64B.
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Figure 3. Microscale Reynolds number Rx, average wave number k ....

and dissipation wave number k D for run 3D64A.

4O

35

30

25

20

15

10

5

I

0.00

"__ Run 3D64B

kave

i i i l, , i i I I I I I i i [ i i i

0.25 0.50 0.75
Time

Figure 4. Microscale Reynolds number Rz, average wave number ka_e,

and dissipation wave number kD for run 3D64B.
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Figure 5. Enstrophy and mean square divergence for run 3D64A.
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Figure 6. Enstrophy and mean square divergence for run 3D64B.
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Vorticity Contours for Run 2D512A at t=0.749

300 Mean Flow_ s: Shock

2O
225 250 275
Streamwise Grid Points

300

Figure 13. Vorticity contours for a small section of run 2D512A.
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Figure 14. Vorticity contours for a small section of run 2D512B.

[9







I Form Approved
REPORT DOCUMENTATION PAGE oM_.o o7o4-or88

ga*herln _ner_mtalr, m_oataneeOea am_C_n*DTe'Fn_an_r_._,_m_'_e _lde_ono f_r_at_m S_n_ccmmemtsrP3a'_:-_jthb_D_;3e'_esl,ma_e¢_r, iI_er_Decto_t_,_

(,J_e_t,on_,Jmformat_on no ang_g_e_t on_r. .d_ mgtmsD raer ,. _smncjto _eao_arte$S_ ces. re. 0d _r nf _ c_,qt_ _ a a __ 1_ 5 te_

Oaw_ H_g_'wa/. _u_e t204 ,:,tl _,g',O_ _3. 222024302 a_d to t_e O*f_ e _ '.4_a4ement _d P_d_et P_e'_,c'_ F_cl_cI.on P':_e:t (0_4-3 t_5) v%a_nm=tcn ._C 2050]

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE' 3. REPORT TYPE AND DATES COVERED

January 1993 Technical Memorandum

4. TITLE AND SUBTITLE" 5. FUNDING NUMBERS

_U 505-90-52-01
PSEUDOSPECTRAL SIMULATION OF COMPRESSIBLE TURBULENCE

USING LOGARITHMIC VARIABLES

6. AUTHOR(S)

John V. Shebalin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001 and

Institute for Computer Applications in Science

and Engineering

NASA Lan_le 7 Resear£h Center_ Hampton_ VA 23681-0001
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 92-61

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA TM-107707

ICASE Report No. 92-61

11. SUPPLEMENTARYNOTES

John V. Shebalin: Langley Research Center, Hampton, VA.

Author is currently in residence as a visiting scientist at the Institute for

.... _Computer Applications in Science and Engineering.
12a. DISTRIBUTION/AVAILABILiTY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 34

13. ABSTRACT (Maximum 200 words)

The direct numerical simulation of dissipative highly compressible turbulent flow is

performed using a pseudospectral Fourier technique. The governing equations are

cast in a form where the important physical variables are the fluid velocity and the

natural logarithms of the fluid density and temperature. Bulk viscosity is utilized

to model polyatomic gases more accurately and to ensure numerical stability in the

presence of strong shocks. Numerical examples include three-dimensional supersonic

homogeneous turbulence and two-dimensional shock-turbulence interactions.

14. SUBJECT TERMS

direct numerical simulation; sompressible turbulence

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

21

16. PRICE CODE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pre_c.bed by ANSI S_=i Z39-18

298-102

NASA Langley, ]993


